Turbines

Blade deflector ups turbine output

Researchers at Rutgers University have invented and tested a patent-pending wind turbine blade deflector that transforms a strong drag force into a strong lifting force.

“The deflector, not a vortex generator, is based upon a powerful force that other airfoil designs don’t address,” says Corey Park, CEO of Dynamic Blade Technologies, a company formed to commercialise this technology and other turbine blade inventions. Park says that adding the deflector has the potential to boost turbine output in light to moderate winds by some 20 per cent. For example, if a 3 MW turbine producing 1,000 kW in a particular wind were refitted with the deflectors, it would produce 1,200 kW. What’s more, a 5 per cent power increase typically translates into a 20 per cent increase in profit for turbine owners.

Discoverer and developer Professor (Dr) F Javier Diez heads the Laboratory for Experimental Fluids and Thermal Engineering at Rutgers. Dr Diez says he thinks the results could provide the same substantial increase and maybe more at higher wind speeds.

“Once the researchers were able to identify the force that decreased drag, they shaped the deflector to increase the lift,” says Park. He adds that Diez’s team completed 50 laboratory tests on a blade that confirms their initial projections. Because the university still owns the intellectual property for the deflector, Park was unable to provide an image of it.

This deflector technology was invented by Diez, associate professor at the Department of Mechanical & Aerospace Engineering at Rutgers University.  Diez is the head of the Laboratory for Experimental Fluids in the Department of Mechanical Engineering at Rutgers. He is an author of over 50 journal articles, conference papers, and technical publications, and has given over 15 invited lectures in the areas of thermal fluid sciences. His research has been funded by industry and government agencies such as NSF, ONR, Nasa, FAA, Darpa, and AFOSR, among others.

The wind turbine experiments were led by Arturo Villega, a PhD candidate at Rutgers in mechanical and aerospace engineering. 

The researchers add that the deflectors can be easily affixed to the blades of existing wind turbines.